人工智能化的本质就是产业革命
作者:tuanshang发表时间:2019-09-19 14:34来源:未知
在过去五年,人工智能快速发展。之前,人工智能虽然有机器学习,但往往受限于传统思维。现在,研究人员不再受限过去20年的经验和成就,而是更大胆地开始创新。
今天人工智能的本质其实是软件产业的革命。软件正在改变全世界,而软件产业本身正在被人工智能的发展所颠覆。越来越多的软件开发不再只是依靠软件工程师的想法、逻辑和认知,而这些软件的核心已变成非常大的模型,有上千亿的参数,有各式各样的大数据。通过训练各种各样的模型,包含统计模型、符号、逻辑、知识表达,软件产业已被人工智能化。
今天,视频、图像、文字都已经被数字化,下一个阶段就是语义化,比如图像理解。在数字原始表达空间,计算机很难做语义理解,我们需要深度学习模型来学习非线性的转化。机器跟人的思维方式不一样,机器算得快,任何问题只要能表达,使用加减乘除就能完成得很好。今天的人工智能的本质其实是软件产业的革命,借由大数据、大计算和机器学习来训练大模型,“编写”越来越智能的软件。
从数据学习机器能理解的语义表达
我们已经到了这样一个时代,有了更好的技术,能够直接从数据中学习机器能理解的表达方式。使用深层神经网络从数据本身直接学习机器能够“理解”的语义表达空间。输入是原始的数据空间,是信息化和数字化之后的结果,例如数字图片和它的语义标注,在输入的数字化原始数据空间里,它们的向量表达和分布一般是非常复杂的。
但借由深度学习,我们可以学到所需要的非线性转换函数来把它们变换或映射到一个机器能理解的新的语义表达空间里。在这个新的空间里,机器能借着计算来处理许多需要人类智能的复杂工作。数据量越大,学习出来的表达方式越好,从而带来更高的识别精度。这将构成一个正向循环。
今天人工智能的本质其实是软件产业的革命。软件正在改变全世界,而软件产业本身正在被人工智能的发展所颠覆。越来越多的软件开发不再只是依靠软件工程师的想法、逻辑和认知,而这些软件的核心已变成非常大的模型,有上千亿的参数,有各式各样的大数据。通过训练各种各样的模型,包含统计模型、符号、逻辑、知识表达,软件产业已被人工智能化。
今天,视频、图像、文字都已经被数字化,下一个阶段就是语义化,比如图像理解。在数字原始表达空间,计算机很难做语义理解,我们需要深度学习模型来学习非线性的转化。机器跟人的思维方式不一样,机器算得快,任何问题只要能表达,使用加减乘除就能完成得很好。今天的人工智能的本质其实是软件产业的革命,借由大数据、大计算和机器学习来训练大模型,“编写”越来越智能的软件。
从数据学习机器能理解的语义表达
我们已经到了这样一个时代,有了更好的技术,能够直接从数据中学习机器能理解的表达方式。使用深层神经网络从数据本身直接学习机器能够“理解”的语义表达空间。输入是原始的数据空间,是信息化和数字化之后的结果,例如数字图片和它的语义标注,在输入的数字化原始数据空间里,它们的向量表达和分布一般是非常复杂的。
但借由深度学习,我们可以学到所需要的非线性转换函数来把它们变换或映射到一个机器能理解的新的语义表达空间里。在这个新的空间里,机器能借着计算来处理许多需要人类智能的复杂工作。数据量越大,学习出来的表达方式越好,从而带来更高的识别精度。这将构成一个正向循环。